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A review is presented of the many different tinite difference and tinite element methods 
(FDM and FEM) for computing recirculating flows as exemplified by the cavity flow 
problem. The various methods are categorized according to whether a single integrated 
system or two segregated, coupled systems are obtained. The integrated schemes appear 
to be simplest and most efficient, mainly because they satisfy the incompressibility con- 
straint directly in the mean and because the Newton-Raphson method can be used with 
them. In some cases, the FEM appears to be the most accurate and stable for the same 
number of unknowns. The method of upwind differencing introduces serious errors in the 
form of false diffusion which can only be diminished by extreme refinement of mesh sizes. 
This has to be checked carefully by convergence studies. 

1. INTRODUCTION 

Numerical analysis of viscous flow problems has continued to receive considerable 
attention especially in recent years due to the upsurgence of the finite element method. 
In fact, there are now so many different methods and programs being discussed that 
it is very difficult to assess them all. Here we try to bring some order to the chaos. 

However, we are only able to do so on one type of problem, namely, that of 
recirculating flows as exemplified by the flow in a rectangular cavity with one moving 
wall. From a purely computational viewpoint, the cavity flow is an ideal prototype 
nonlinear problem which is readily posed for numerical solution. Because of its 
geometric simplicity and comparatively minor singularities, it provides a model 
problem for testing new numerical schemes and as a benchmark solution for making 
comparisons among various schemes using different methods of problem formulation, 
discretization, iteration, and approximation. Luckily, a majority of the analysis 
methods have been tried on this problem and limited results have been published. 

Here we attempt to review and assess these many varied methods including both 
finite difference and finite element ones (FDM and FEM) as applied to this prototype 
problem. In that sense, this paper represents an attempt to extend the evaluation by de 
Vahl Davis and Mallinson [I] to cover FEM as well as FDM. The discussion and 
comparisons include both the theoretical aspects of the various formulations as well as 
the practical ones of computer algorithms. 
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2 TUANN AND OLSON 

The various formulations reviewed are categorized first according to whether a 

single integrated system or two segregated, coupled systems are obtained. This aspect 
has important consequences on the possible computing methods and their efficiency. 
The next categorization is based on whether the conservation laws are simulated 
by a single functional (weak form) or by split differential equations (strong form). The 
final categorization concerns the computing methods used, such as pseudoloads, 
successive approximations, or Newton-Raphson. 

The technique of upwind differencing for convection is discussed in light of 
recent results from the FEM stream function formulation [2]. Here we are merely 
adding evidence to further show the inadequacy of this approach. That is, the false 
numerical viscosity that results completely destroys the accuracy of the calculations. 

2. GOVERNING EQUATIONS AND FORMULATIONS 

We consider a rectangular cavity of height Al and width l, in which a fluid of 
constant density p and viscosity p is set into recirculating motion by steady translation 
of the top wall at velocity - (I. Let (x, v) and (u, v) be the nondimensional coordinates 
and velocities, respectively. # = $‘/Ul, 5 = -<‘l/U, p = (p’ - pi)/pP, and 7 = 
~‘/plP are the nondimensional streamfunction, vorticity, pressure, and shear stress, 
respectively. Here the primed quantities are dimensional and pi is the pressure at the 
center of the bottom wall. The cavity flow is shown schematically in Fig. 1. 
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FIG. 1. Schematic sketch of square cavity flow. 
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On $2, the interior of the rectangle, the equations to be satisfied are the Navier- 
Stokes (N-S) equations, that is 

v . (uu) = --pz + (1 /R) v2u, (14 
V . (YU) = -py + (l/R) V21’, (lb) 

v . u = 0, 0) 

where u is the velocity vector and R = pUl/p is the Reynolds number and subscripts 
denote partial derivatives. Equations (1 a)-( lc) can be written in terms of two auxiliary 
variables (#, c), stream function and vorticity, respectively, as 

(l/R) V2t’ + (&x5), - CC,<>, = 0, (24 
v2* = -(, (2b) 

or in terms of the single variable I/, as 

(l/R) V4$ + (hcV2h - (h,V2@), = 0. (3) 

When the latter two formulations are used, the pressure is subsequently recovered 
by solving the Poisson equation 

YP = 2($4dTL - *,“tJ. (4) 

On r, the boundary of the rectangle, there are the no-slip and impermeable 
boundary conditions 

u(0, y) = u(1, v) = U(X, 0) = 0; u(x,X) = -1, (54 
v(0, y) = a( 1, v) = v(x, 0) = v(x, A) = 0. (5b) 

These conditions can also be written in terms of the stream function #. Equation (4) 
also requires boundary conditions which for the present problem are the normal 
derivative of pressure obtained from the momentum equations. 

3. REVIEW OF VARIOUS NUMERICAL SCHEMES FOR THE CAVITY FLOW PROBLEM 

We shall make no attempt to d&cuss the numerical simulation of planar viscous 
incompressible flows in general, For this, the monograph [3] and the recent paper by 
Roache [4] should be referred to. In the following, the schemes are first grouped 
according to their means for satisfying incompressibility (or problem formulation) 
and their solution method. Then they are discussed individually to assess the results. 

The numerical solution of Eqs. (la)-(lc) presents two main difficulties because of 
two properties of the N-S system: (1) The system is not a regular one. That is (lc) 
containing no p term is a constraint upon (u, v) rather than a coupling equation to 
(la), (lb). (2). The system is nonlinear. The incompressibility and the dissipation 
terms of (la), (lb) show the elliptic character of the system. Thus an inner iteration 
(or a direct solver) is required to solve the (linearized) discrete system with boundary 
conditions. As the system is nonlinear, its solution can only be obtained by lineariza- 
tion-an outer iteration. Therefore, a double iteration scheme is generally needed. 
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The formulation method is to write the discrete analog to the mass and momentum 
conservation laws. It seems logical to amalgamate the various numerical schemes for 
the general planar problems into two main categories, depending on whether one 
integrated system or two coupled systems are obtained. We note that the conservation 
laws or their weighted residual method equivalent could either be simulated by a 
single functional-the weak form, or by two split differential equations-the strong 
form. 

Formulations in the first category seek to represent globally the conservation laws of 
the flow. In the second, the formulations attempt to achieve local balance of mass and 
momentum flux. It is only in the limit of infinitesimal mesh (infinite degrees of 
freedom) that the two approaches meet. That is, the solution attains both true energy 
and local balance of flux. The former, based on global principles, has to satisfy 
certain local continuity properties, while the latter, based on local balance, has to 
satisfy global conservation properties. 

3.2. Steady-Integrated-Simultaneous Methods, SZS 

The former category, referred to herein as steady-integrated-simultaneous (SIS), is 
strictly for steady problems for which an integrated system of nonlinear equations is 
obtained. Hence the aforementioned double iteration has to be used. For solutions, 
the pseudoload method, the successive approximation, and the Newton-Raphson 
(N-R) are all applicable. However, only the N-R is consistent with the single system 
formulation in achieving a better convergence rate and a higher Reynolds number. 
In each step of the outer iteration, the conservation laws are approximated simul- 
taneously as they have been integrated into a single system. We note that the SIS 
applies only when the system is in terms of either primitive variables or streamfunc- 
tion, but not of streamfunction and vorticity, as 5 is only an auxiliary variable for 
reducing the order of the equation. Moreover, so far the SIS is almost exclusive for 
FEM discretization. The various SIS-FEM schemes are listed in Table I according 
to the degree of accuracy in fulfilling the incompressibility constraint. 

TABLE I 
Steady-Integrated-Simultaneous FEM Schemes 

Abbreviation Approach 
Means to satisfy 
incompressibility Author 

SIS-(u, a) 

SIS-(u, II, p) 

SIS--(u, u, 77) 

sIs+N 

Divergence free Constructing u of V . u = 0 Temam and Thomasset [7] 
(pointwise or elementwise) 

Lagrangian multiplier Satisfied in the mean on Tuann and Olson [8] 
global domain with p as Argyris and Mareczek [9] 
Lagrangian multiplier 

Penalty function Satisfied in the mean on Hughes er al. [ll] 
each element domain, 
Jsa.V.udQ-+Oasa+co 

Solenoidal field Constructing * of Cl class Tuann and Olson [13] 
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The divergence free vector field approach has been proposed by Oden [5] and 
Fortin [6], but it still is not very successful due to the enormous difficulty in construct- 
ing an element which is compatible (satisfies interface continuity) and simultaneously 
incorporates a divergence free velocity field. For the square cavity, Temam and 
Thomasset [7] used a divergence free but nonconforming element, namely, a triangular 
element with midside nodes with velocities as nodal variables. This drawback probably 
explains their failure to show the lower corner vortices. Fortin [6] previously proposed 
the use of an externally divergence free element, that is, the element having continuous 
velocities but with 

s V * u dQ = 0 
I;, 

as constraint on each element. However, no results were given. 
To date, most of the integrated schemes are of the (u, u,p) type, in which both 

equilibrium and incompressibility are satisfied only in the mean. That is, a variational 
or Galerkin formulation of the momentum equations incoporates the incompressibility 
as constraint upon the velocities with pressure p serving as Lagrangian multiplier. 
The formulation is based on a restricted variational principle of the functional (in 
dimensional form) 

+ p[uz2 + vu2 + B(u, + GJ~I) dQ - jr,@ + r;Fu> 4 (6) 

where the non-self-adjoint convective terms (bracketed) are held fixed during the -- 
variation, and (X, Y) are specified surface forces on the stress boundary r, (for cavity 
flow, I’, = 0). Clearly, Eq. (6) represents the balance of different energy rate contribu- 
tions, such as rate of change of kinetic energy, rate of work done by compression, 
rate of energy dissipation, and rate of work done by surface forces, respectively. The 
form of Eq. (6) clearly indicates that, in order to have incompressibility satisfied in the 
mean, the pressure must be interpolated by a polynomial of at least one order less 
than that for velocities (Tuann and Olson [8]). That is, a mixed interpolation finite 
element is required. 

For the square cavity flow, Tuann and Olson [8] used a triangular element of 
mixed Lagrangian interpolation, namely, a truncated cubic (9 DOF) for each of (u, v) 
and’linear (3 DOF) for p. The results were compared with those obtained by the $ 
approach on the same gridwork. It was found that the mixed Lagrangian (u, U, p) does 
save in computational effort as shape functions and Gaussian quadrature can be 
readily used. However, for the same gridwork the accuracy is not as good even 
though it involves more nodal variables. 

Argyris and Mareczek [9] used two types of mixed interpolation, both for triangular 
shaped elements. One was mixed Lagrangian with quadratic for (u, v) and linear forp, 
and the other was mixed Hermitian-Lagrangian with a Hermitian cubic (10 DOF) 
for (u, P) and quadratic for p. However, they used the least effective but the simplest 
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method for outer iteration, that is, the pseudoload method, in analogy to geometrically 
nonlinear solution methods in solid mechnics. The advantage of this method is that 
the coefficient matrix remains symmetric and unchanged. The price for the simplicity 
is the low numerical stability limit of R = 130 (using a 136-element grid). However, at 
R = 100, the mixed Hermitian-Lagrangian with continuous vorticity at element 
interfaces gave a neat representation of lower corner vortices which is in excellent 
agreement with Burggraf’s results. 

The (u, U, n) penalty function method was proposed by Zienkiewicz and Godbole 
[lo] and was used by Hughes et al. [ll] for the solution of the cavity flow. In this 
method, the incompressibility is introduced via a penalty function rr. The function of 
Eq. (6) is replaced by one embodying the square of the incompressibility constraint 
multiplied by a “penalty,” a large positive number 7~. That is, 

1 = n kJ(ukc + UUJ u + p(uQc $ Z’U,) u + “(U, + 2.,)2 s 

+ p[uz” + v, + &, + r,)2]} di2 - j$Tu + Yv) ds 

where -x(u, + v,) has been introduced to replace the pressure. Therefore, al,though 
the pressure has been eliminated to reduce the problem size, a sequence of T values 
must be tested until the compressibility error U, + v, is negligible over the whole 
domain. Moreover, as noted in the (u, L:, p) approach where the pressure is to be 
“under-interpolated” by one order, a similar process must be taken, namely, the 
n-term should be “under-integrated” by one order less than that for all other terms. 
Otherwise the element is overconstrained and the equations cannot be solved. 

For the square cavity flow, Hughes et al. [l l] used the four-node quadrilateral 
element. Bilinear shape functions were used for the velocities and two-by-two Gaussian 
quadrature was used except for the penalty function term where a reduced one-by-one 
quadrature was employed. The Newton-Raphson method was used in the calculations. 
Their scheme produced convergent solutions for R up to IO4 without the need for an 
accompanying mesh refinement, a situation very similar to the upwind differencing 
FDM to be discussed later. We suspect that the under-integrated ~T(u, i v,)” term 
produced a false diffusion which stabilized the numerical calculations and distorted 
the flow. Their midplane velocity profiles appear erroneous, but this was apparently 
caused by a boundary condition error (private communication). 

The last SIS method shown in Table I is the solenoidal one using the stream func- 
tion alone. As noted, in order to be consistent with the definition of $, this method 
has the restriction that the finite element interpolation should be of Cl c1ass.l Once 
this is satisfied, the approach has many advantages not shared with any other scheme. 
For example, to obtain the same accuracy, it requires the least number of degrees of 
freedom and probably also the least amount of computations. Ail these advantages 

1 Some results have been obtained with C” elements (Lucchi [13]) but only at low Reynolds numbers. 
Hence the efficiency and accuracy cannot be ascertained. 
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could be expected, since only the solenoidal field has the incompressibility satisfied 
explicitly, and thus the solution has to satisfy only the remaining conservation law. 

Very little has been done with finite differences in this area (cf. Roache [3]), and it is 
only recently that progress has been made with finite elements, this being pioneered 
by Olson [12]. In the method, Eq. (3) is replaced by the equivalent pseudovariational 
principle 

where S, n are tangential, normal directions, respectively. When the first variation is 
taken, #” is held fixed and then equated to # afterward, thus yielding Eq. (3) as the 
Euler equation and the following natural and kinematic boundary conditions on r 

eitherp, = 0 or s* = 0, Pa, b) 

and either T = 0 or a*, = 0 (9~ 4 

where 7 is the shear stress. Note that only the kinematic conditions (9b), (9d) are to be 
satisfied explicitly, whereas the natural ones on pressure and shear stress are left 
floating for the numerical method to approximate. The latter fact is of great practical 
significance in many problems. 

The functional of Eq. (8) is discretized with a triangular finite element using an 
incomplete quintic polynomial and 18 degrees of freedom, namely, (z,!J, & , 4, , $rZZ , 
#oy, #,,) at each vertex. The element is of Cl class thus providing a continuous 
velocity field. However, the vorticity is not continuous except at the node points in a 
grid of elements. The high-order polynomial used in the element allows quite steep 
gradients to be captured, for example, in the boundary layer, without a locally 
refined grid. The subsequent calculation of pressure via a variational principle equi- 
valence of Eq. (4) also uses the same high precision element, thereby ensuring excellent 
accuracy. 

The Newton-Raphson method is applied to the resulting nonlinear equations for # 
yielding a very stable positive definite coefficient matrix and truly quadratic conver- 
gence. Only a few iterations are needed for convergence from one Reynolds number 
to another. 

Very detailed results have been obtained for the square cavity with a 6 x 6 and an 
8 x 8 grid of elements. The 6 x 6 grid failed to converge above R = 2500 and the 
8 x 8, above R = 3450. However, the accuracy of the results had already deteriorated 
significantly before convergence failed, so the results above R = 3000 are perhaps 
only qualitative. The third secondary vortex at the upstream end of the sliding lid 
shown by the Vahl Davis and Mallinson [I] at R = 2000 was obtained here earlier at 
R = 1500 probably because of the overall higher accuracy in this method. Finally, 
we note that the tendency of the flow to approach a solid rotating core at higher 
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Reynolds numbers according to Bachelor’s model was completely verified by the 
results. See Tuann and Olson [2] for more details. 

For all the integrated schemes, although simpler iteration methods are possible, 
there is now considerable agreement that the Newton-Raphson is the most effective in 
obtaining convergent solutions with less computational effort and in attaining higher 
numerical stability with the same gridwork. However, the price for the quadratic 
convergence rate and the higher Reynolds number, is that the coefficient matrix 
(Jacobian) must be updated at each step. This may be time consuming, particularly 
when complicated matrix manipulations and/or large problem sizes are involved. 

3.2. Transient-Segregated-Iterative Methods, TSl 

The second category, referred to herein as transient-segregated-iterative (TSI) 
covers those schemes which result in two segregated but coupled systems, of which 
one approximates incompressibility and the other dynamic equilibrium. Since this 
coupled system must be solved iteratively, therefore, the outer iteration serves to 
solve the systems alternatively such that both conservation laws are achieved in the 
limit. Moreover, the Newton-Raphson method is not feasible here, and the non- 
linearity is always handled by successive approximations which goes along with the 
alternating procedure. Consequently, only a linear convergence rate is possible, and 
the schemes have various sources of instability. They are, the nonlinearity of the 
momentum equations, the boundary effect when an auxiliary variable (i.e., 5) is 
introduced, and the incompressibility error. 

This category includes both (u, ~1, p) and (+!J, <) approaches. The former has an 
auxiliary equation, namely, the Poisson equation for pressure, to replace the continuity 
equation (lc) for enforcing incompressibility. The latter has a similar equation, the 
definition of 5 in terms of #, to be used in the reverse sense, that is, to recover the 
streamfunction from the transportive vorticity. According to Dorodnicyn [14] the 
solution methods can be classified as; method of successive approximations, real 
stabilization or transient method, and artificial stabilization or false transient method. 
A successive approximation method for steady flow problems in terms of two separate 
systems is equivalent to a marching method for unsteady flow problems in terms of an 
integrated system. Thus, the category is referred to as transient-segregated-iterative. 

Clearly, for schemes of this category, the formulation follows directly the two 
systems of equations. They are: the momentum equations (la), (lb) and a Poisson 
equation obtained from them, or the vorticity transport equation (2a) and the defini- 
tion of vorticity (2b). The FEM as normally applied is a straight parallel to the conven- 
tional FDM, the only difference being that the formulation is based on a Galerkin- 
WRM equivalent of the differential equations. Therefore, the same difficulties are 
encountered. For instance, the mesh must be decreased drastically with increasing 
Reynolds number in order to obtain convergent solutions without loss of accuracy. 
This difficulty suggests that the FEM used along with the segregated schemes offer 
very little gain over the FDM. As pointed out earlier, in the segregated schemes, the 
continuity equation (lc) is satisfied neither exactly nor in the mean, but only asymp- 
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totically, in the sense that the incompressibility error becomes insignificant only in the 
limit of converging solutions. Therefore, it is necessary to retain the dilitation term 
D = U, + v, whenever it appears, and to use the divergence form instead of the 
convective form for the convection terms. For instance, V . (~5) is preferred over 
u . 05 in Eq. (2a). In the following, the various TSI schemes are reviewed as applied 
to the square cavity flow. 

The (u, v, p) approaches are set up for time-dependent problems. The governing 
equations are 

and 

ut + (4! + (VU), = -Pz + (l/R) v2u, 

vt + (uu), + (u4, = -P1/ + (l/R) v2v 

(104 

(lob) 

V2p = -[D2 + uD, + vD, + 2uyv, - 2u,vr] - D, + (l/R) V2D (11) 

where D = u, + r, is the dilation, and Eq. (11) reduces to Eq. (4) whenever the 
constraint D = 0 is satisfied exactly. Since this constraint is to be embedded in the 
velocity field via the iteration process in time, it is found that the D, term alone is 
sufficient to enforce the D = 0. That is, Eq. (11) can be written as 

02~ = 2(u,v, - u,v,) - Dt . (12) 

The two systems, Eqs. (lOa), (lob) and (11) are to be solved alternatively. At step n, 
the known (@, on, p”) are used to calculate (u n+l, vn+l) from Eqs. (lOa) (lob). These 
new velocities in general will not satisfy incompressibility, that is, Dn+l will not be 
zero. In order to take care of this discrepancy and to enforce the constraint at the 
next step, the D, term in Eq. (12) is set to 

nt1 D, = 
Dnf2 - Dntl pt1 

At =-dt’ 

Thus the deviation of D from its assumed zero is retained as a driving force for pn+l. 
Therefore the new p will be influenced by the nonzero D. Moreover, it is found that 
the same backward difference formula should be used for ut of Eqs. (lOa), (lob) at 
step IZ. This enables the two systems to be solvable iteratively. 

Donovan [15] used the above transient-(u, v, p) approach and the FDM to obtain 
a limiting solution at T = 10 (T is nondimensional time of U/l) for R = 100. With 
the known velocities (impulsively started motion), the finite difference form of the 
Poisson equation was solved iteratively at each time step using successive over- 
relaxation. With pressure known, the finite difference forms of (lOa), (lob) were 
solved explicitly for velocities. His results indicated that the unsteady solution was 
approaching the correct steady solution. Tuann and Olson [16] employed the same 
approach but with a FEM formulation. Both velocity and pressure were interpolated 
by the same truncated cubic (9 DOF) triangle element, and a gridwork of 128 elements 
and 81 nodes was used along with a time step of 0.1. The finite element form of 
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Eq. (12), with the additional source term Dr , was solved by a direct solver. Then the 
finite element forms of Eqs. (lOa), (lob) were solved implicitly. That is, the viscous 
terms were evaluated at the advance step n + I, while the convective terms were at 
the present step n. The calculation for R = 100 was terminated at T = 3, which was 
too soon to be the limiting stage. However, the trend of #, 1, andp development was 
found to be consistent with Burggraf’s steady results. 

The most frequently used TSI scheme is one with (#, 5) as unknowns. In this TSI- 
(#, 5) approach, Eq. (2a) is a linear elliptic equation in i with known #, while Eq. (2b) 
is linear elliptic in $J with 5 known. This suggests an iterational process to solve the 
resulting systems alternatively. The impermeable wall conditions of #s = 0 are used 
together with Eq. (2b), while the no-slip condition of specified I+!J, is used along with 
z+$ = 0 (again) in evaluating the wall value of 5 via its definition, that is, Eq. (2b) again, 
this time in the reverse sense and at the boundaries. As noted this scheme, although 
using #, only satisfies the incompressibility constraint asymptotically, the same as 
equilibrium. Therefore, it suffers from a serious instability at low levels of R, unless an 
appropriately refined grid is used to reduce the mass conservation error. 

When seeking stability without grid refinement, one tends to look upon the non- 
linear convection terms as the main cause of instability. It is argued that these terms 
are strictly transportive and hence they may be biased along the local flow. This 
brings in a different order of accuracy in approximating the convection terms of the 
equilibrium equation. That is, a first-order unidirectional (along the local flow) 
difference is applied to convective {, while a second-order central difference is applied 
to diffusive <. This mixed-order scheme results in devaluating the convection or 
exaggerating the diffusion by means of an extraneous diffusion. This false diffusion 
arises, because in the linear equation for i (i.e., Eq. (2a)) the form for the [ derivative 
in the convection terms is only first-order accurate, whereas the entire t: equation is 
solved to second-order accuracy [I]. This produces artificial stability but at the cost 
of a severe misrepresentation of the flow. 

According to Bozeman and Dalton [17], there are four possibilities in representing 
the convection terms in difference form. They are (1) central difference on convective 
form (CDC), (2) central difference on divergence form (CDD), (3) unidirectional 
difference on convective form (UDC), and (4) unidirectional difference on divergence 
form (UDD). In the (#, 5) approach, the evaluation of wall vorticity is extremely 
important. It is the wall-produced < mu. which actually links the split systems, or 
physically drives the calculation. The most frequently used first-order formula 
(after Thorn and Apelt [18]) is 

Runchal et al. [19] have derived the following second-order form 

(14) 

(15) 
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and Torrance et al. [20] have used another second-order form 

(16) 

Here h is mesh size or distance normal to the wall. Equation (14) is obtained by 
retaining the h2 term of the Taylor expansion for # jw+l about the wall, Eq. (IS) is 
obtained by retaining the h3 term of the same expansion, while Eq. (16) is obtained by 
Taylor expansion for # (w+2 about the wall. 

The various TSI-(I/I, 5) schemes used so far for the cavity problem are summarized 
in Table II, where h denotes the mesh size and thus the gridwork used, and R denotes 
the highest Reynolds number for which the scheme yielded a convergent solution. 

Kawaguti [21] studied the cavity problem with X = -$, 1, and 2, and for R ranging 
from 0 to 128. His aim was to elucidate the general features of the Navier-Stokes 
equations. His FD analogs of Eqs. (2a), (2b) were written in relaxation form, and one 
sweep was taken for each field in each step. The results were shown in the form of 
contour plots of $I, 5, and p for a sequence of R values. No secondary vortices were 
observed due to the coarse grid of 11 x 11 used. 

Mills [22] arranged the FD analogs in Liebmann forms and proceeded with two 
sweeps for each field in each step, and 5 lw was smoothed by a factor of one-half. The 
aspect ratios considered were +, 1, and 2, but R = 100 only. His results using a 
15 x 15 grid did show the upstream secondary vortex. However, the same vortex 
was not observed in his flow visualization experiment. He explained that the surface 
tension traction and the agglomeration of tracing particles in the corner may have 
inhibited this much weaker rotation. 

Burggraf [23] did an excellent numerical study on the square cavity, using a sequence 
of successively refined grids for a range of progressively increasing Reynolds numbers. 
Similar to the previous two researchers, he used central differences on the convective 
form of the nonlinear terms and Thorn’s first-order form of 5 Izv. However, unlike 
Kawaguti, an under-relaxation factor K < 1 was used for both # and 5 relaxations. 
With this, he was able to attain higher Reynolds numbers but at the price of a slower 
rate of convergence. With increasing R, he encountered the need for both a finer grid 
and a further reduced K. The former involves the problem size and the latter the 
number of iterations. Thus it becomes prohibitively expensive to go for higher R. As 
summarized in his Table 2, to obtain convergent solutions for R = 0, 10, 100, 200, 
and 400, he needed to use a sequence of grids with increasing problem size N and a 
correspondingly decreasing K. We have extracted data from his Table 2 and arranged 
them in Table III to show the need for a drastic increase of problem size to maintain 
the accuracy. Here, the #,, value is used as a rough index of accuracy. 

The rearrangement of Burggraf’s results in Table III exhibits clearly the convergence 
with grid refinement for a fixed R (i.e., column-wise), the loss of usefulness with 
increasing R for a fixed grid work (i.e., row-wise), and the demand for an almost 
linearly decreasing mesh spacing along with a similar decrease in under-relaxation 
factor K when R is increasing linearly. That is, a 21 x 21 grid with K = 1 will give 
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fairly good results (including secondary vortices) for R from 0 to 10, and a 3 1 x 3 1 grid 
with K = 0.8 for R around 200 will give equally good results. Accordingly, a 61 x 61 
grid with K = 0.2 is predicted for R = 800. This analysis of Burggraf’s results explains 
his failure to obtain convergent solutions for R > 400. Most importantly, it discloses 
that the mesh spacing must decrease more than linearly with R for a conventional 
TSI scheme without under-relaxation or other smoothing techniques. 

TABLE III 

Burggraf Results of t,b,, Arranged to Depict the Convergence with Mesh Size and 
the Loss of Accuracy with R 

R: Reynolds number, K: under-relaxation factor 

Grid h N 0, 1 10, 1 loo, 0.7 200,0.5 4oqo.5 

11 x 11 0.1 202 0.0981 0.0978 0.0784 0.0563 - 
21 x 21 0.05 802 0.0992 0.0994 0.0955 0.0868 0.0675 
31 x 31 0.033 1802 0.0997 0.0999 0.0999 0.0987 0.0923 
41 x 41 0.025 3202 0.0998 0.1000 0.1015 0.1032 0.1017 
51 x 51 0.02 5002 0.0998 0.0999 0.1022 - - 

The Imperical College group have conducted several studies of the square cavity 
problem [19, 24, 251. Their interest was mainly with developing a powerful scheme 
for general fluid dynamic and transport problems, and the cavity flow was a test 
problem. The main features of their scheme are: (i) the use of UDC; (ii) the use of a 
nonuniform mesh system; and (iii) the use of Eq. (15) for 5 IW . The unidirectional 
difference scheme introduces false diffusion of virticity. The magnitude of false 
diffusion can be expressed in terms of a numerical viscosity K, which is a function of 
mesh size h and local velocity vector (i.e., the speed u and the angle 13 which the stream- 
line makes with the x axis). 

Gosman et al. [25] gave a solution for the square cavity for R = 1000 using an 
extremely fine 81 x 81 nonuniform grid. This result can be regarded as nearest to the 
exact solution, since the 81 x 81 grid used is in agreement with our prediction based 
on Burggraf’s study. The UDC used along with an appropriately refined grid may be 
ideal, as it causes no serious false diffusion due to small h, and at the same time, its 
transportive property is actually helpful in achieving equilibrium. The streamline 
plot in comparison with a flow visualization pattern at about the same R value 
obtained by Reiman and Sabersky [26] shows fairly good agreement. 

Greenspan [27, 281 considered the square cavity flow as a prototype problem of 
computational fluid dynamics. Since his main interest was in the numerical method 
itself, he used UDC instead of conventional CDC to ensure diagonal dominance of the 
coefficient matrix. The two systems were solved by successive over-relaxation with 
different factors. However, both fields were moved only partially by different smoothing 
factors. He found that severe smoothing was needed for 5 to achieve convergence. 
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The results show the existence of two secondary vortices at R = 50 with a 41 x 41 grid. 
In view of the false diffusion present, his result for R = lo5 with the same grid is 
completely dubious, and of course does not compare with the experiment by Mills 
~291. 

The flow in cavities of various aspect ratios was studied by Bozeman and Dalton [ 171 
in order to compare the aforementioned four different methods of convection approxi- 
mation. The square cavity with grids of 21 x 21, 31 x 31,41 x 41, and 51 x 51 was 
solved for R = 10, 102, and 103. At R = 10, all four schemes yielded equally good 
solutions, with CDD slightly better than the others. At R = 102, the superiority of 
the CDD was displayed by its rapid convergence with decreasing mesh size. This is 
to be expected because the CDD is the one which conforms with the continuum 
better than the others. However, in agreement with our presumption, at R = 103 
neither form of central difference yielded convergent solutions using the range of 
gridworks. The R = IO3 result obtained using UDD with a 51 x 51 grid, although 
being similar in form to that by Gosman et al. had a lower $,, , indicating a lower 
strength primary vortex. 

The most recent study of the steady cavity flow is that of Nallasamy and Krishna 
Prasad [30] who proposed to detail the flow structure over a wide range of R from 0 to 
5 x 104. However, they used the UDC scheme and a gridwork of 51 x 51 and hence, 
in view of the above discussion, even their result at R = lo3 is open to question. 
Further, their results show a decadence of the secondary vortices (upstream one at 
R = 5000, downstream one at 30,000), which is at odds with Mill’s experimental 
result. 

Most previous workers have cited the experimental work by Pan and Acrivos [31] 
for comparison. The flow visualization study was conducted for cavities with various 
aspect ratios covering a wide range of R. The apparatus consisted of a lZin.-diameter 
wheel rotating on top of a hole of 40-in. depth and 4 x 4-in. cross section. This hole 
was fitted with a removable diaphragm to adjust to the desired X. In the square 
cavity case, the experiment ran up to R = 2700. The upstream vortex was found to 
shrink after R = 500 and to retreat to its R = 0 position and size at R = 2700. 
However, the experiment failed to exhibit at all the downstream vortex, which has 
been noticed by almost all numerical studies to be about the same size and strength 
as the upstream one. Moreover both vortices were still observable in Mill’s ]29] 
result at R = 105. Besides the unavoidable three-dimensional effects induced by the 
narrowness of the hole, it is suspected that the curvature of the wheel, which protruded 
17 % into the square cavity, may have had more effect than the experimenters 
supposed. Presumably this prevented them from observing the third secondary 
vortex in the UR corner. 

Unlike the foregoing (#, 5) schemes which achieve steady solutions by directly 
solving the steady equations, there are two approaches which obtain steady solutions 
by solving the unsteady equations. In both approaches, the vorticity transport 
equation is of parabolic type, that is Eq. (2a) is cast into the form 

St - (l/R) WI - (h& + (hL>z = 0. (17) 
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The real stabilization method is to solve Eqs. (17) and (2b), and thus obtain the 
limiting solution as t -+ co. It is noted that this real unsteady system is not of Cauchy- 
Kovaleska type. As it is a combination of parabolic and elliptic equations, its solution 
process could be lengthy. The advantage of the method is that the history of flow 
development can be depicted (see Donovan [15]. When the only interest is in the 
eventual steady-state solution, one is not obliged to use the real system. Any non- 
stationary system can be used with the same steady part although perhaps it has no 
physical sense. So to cast the unsteady Navier-Stokes equation into Cauchy-Kovaleska 
type, a fictitious transient term with adjustable parameter E is added to the continuity 
equation (2b). That is Eq. (2b) becomes 

E& - v2+ - 5 = 0 (18) 

where E is a parameter used to enhance the transient convergence. The essential 
feature of this method is the conversion of all governing equations to parabolic type. 
Thus each equation may be marched in time. 

Torrance et al. [20] studied the real time-dependent problem. The forward time 
and central space difference were used except for the convection terms in Eq. (17) 
for which the UDD was employed. The finite difference analog of Eq. (17) was solved 
by an explicit method, while that of (2b) by over-relaxation. The stability of the 
scheme is achieved by restricting the time step. For the square cavity, they used a 
21 x 21 grid to obtain a R = 100 solution which agreed well with Burggraf’s. They 
claimed their method had a better convergence rate with mesh refinement than Burg- 
graf. However, they did not attempt higher R values which are known to be more 
difficult. 

Marshal and van Spiegel [32] and Marshal [33] used the false transient method to 
study the steady square cavity flow. The finite difference analogs of Eqs. (17) and (18) 
were solved by both explicit and implicit schemes. Both CDC and UDC were used 
for the convection terms. Their results for R = 1000 using a 41 x 41 grid are not 
comparable with Gosman et al. [25] or Bozeman and Dalton [I.] 

de Vahl Davis and Mallinson I] also used the false transient method. They employed 
two parameters associated with the transient terms in Eqs. (17) and (18) respectively. 
These parameters do not affect the final solution but do affect the rate at which it is 
approached. Their purpose was to evaluate the unidirectional and central difference 
convection approximation via Greenspan [28], Gosman et al. [25], Torrance et al. [20] 
Bozeman and Dalton [17], Burggraf [23], and their own false transient schemes. In 
this connection, the false diffusion was studied in detail to show that the unidirectional 
difference approximation is already inaccurate at R = 100 for any but very refined 
gridworks. In fact, they concluded that at least a 101 x 101 grid is needed to sub- 
stantially reduce numerical diffusion at R = 1000 such that an effective Reynolds 
number greater than 900 can be obtained throughout the cavity. 

They explained that the failure of Burggraf’s scheme to yield solutions for R 
higher than 1000, in contrast to their scheme which also used the central difference 
approximation for convection, was due to spurious sources of vorticity in the down- 
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stream corner adjacent to the moving wall. The variation of the u velocity near the 
moving wall is such that the convective terms enhance the vorticity production near 
the downstream corner. However, in the Burggraf scheme, this effect is stronger due 
to the convective form instead of the divergence form of equations being used. Hence, 
it seems that use of the divergence form of the convective terms leads to a more stable 
numerical method. 

Finally we note that the de Vahl Davis and Mallinson solution for R = 2000 
exhibits for the first time a third secondary vortex in the upstream corner adjacent 
to the moving wall. The occurrence and appearance of this vortex has been verified 
by our own work discussed above, although we found it appeared earlier at R = 1500. 

3.3. Numerical Results 

Unfortunately, until recently most people working on the cavity problem have 
only shown contour plots without giving specific numerical values. This has prevented 
detailed comparisons. However, we show in Table IV some of the numbers now 
available for comparison. 

For R = 100, there is fair agreement on the values of stream function, vorticity, 
and pressure at the primary vortex center. However, the values of stream function at 
the two secondary vortices as predicted by FEM and FDM are not as close, although 
this may be because of the manner in which the FEM values were obtained. That is, 
the FEM results were interpolated on a 101 x 101 grid over the cavity and this may 
not have been fine enough since the secondary vortices are very small at this R. At 
R = 400, the above has reversed with better agreement for the secondary vortices 
than for the primary one. We expect that the FEM results would not change much 
with further grid refinement, e.g., a second-order Richardson extrapolation of 
$,, is 0.111, and therefore this leaves a significant discrepancy between the FEM and 
FDM predictions. We note that the former is converging from above whereas the 
latter is from below. 

As R increases further, the discrepancy grows, especially between the FEM and 
the upwind FDM. In particular, the latter method fails to show the third secondary 
vortex at the UR corner. However, as noted earlier de Vahl Davis and Mallinson’s 
central difference method did exhibit this vortex. Hence to that extent, there is reason- 
able agreement between the FEM and the central difference FDM. Finally, we must 
conclude from this limited comparison that there remains considerable controversy 
over the validity of most predictions even at moderate Reynolds numbers, let alone 
those at high values. 

4. CONCLUSIONS 

Here we have attempted to review some of the many different methods for computing 
recirculating flows, as exemplified by the cavity flow problem. We have categorized 
the various formulations according to whether a single integrated system or two 
segregated, coupled systems are obtained. This categorization was common to both 
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finite difference and finite element methods. Concrete conclusions are very difficult 
to draw from the review because of the many pros and cons of the various methods, 
not to mention the heavy investment in experience and software already present. 
However we might tentatively conclude the following: 

1. All the segregated schemes suffer from the successive implementation of 
incompressibility. Therefore this constraint should be imbedded into the discrete 
analog wherever possible. For example, the divergence form of the convection terms 
is recommended over the convective form. Further, in the (u, ZI, p) approach it is best 
to retain Dt in the Poisson equation for pressure or to insert pt into the continuity 
equation (see Chorin [34] for the artificial compressibility technique). 

2. The integrated schemes which avoid alternating solutions appear to be the 
most efficient and generally are simpler. This is partly because the incompressibility 
constraint is satisfied directly in the mean and partly because the Newton-Raphson 
method is applicable (at least for steady problems) with its faster convergence and 
superior convergence. 

3. Upwind differencing should be avoided if at all possible because it introduces 
very serious errors by way of false diffusion. It should only be used with very fine 
discretization meshes, and the accuracy should be checked with progressively refined 
meshes at each Reynolds number. 

4. It is impossible to conclude whether FDM or FEM are to be preferred 
because of the many complicated side issues. However, it does appear in some 
instances, that the FEM provides higher accuracy and more stable convergence for 
fewer unknowns than the FDM. This, however, takes no account of computing effort 
which may be higher or lower. Unfortunately, there are not enough FEM results 
available for the higher Reynolds numbers to make conclusive comparisons. 

5. It is hoped that a review of this type will help to stimulate communications 
between the FDM and FEM researchers so as finally to lead to more cooperation. 
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